CHOWDHURS LINE ROLL OF THE PROPERTY OF THE PRO

Text Book(s)

Reference Books

2.

M.R. Speigel, Complex Variables, Schaum series.

Edition), McGraw – Hill International Edition, 2009.

Mathematics, Springer-Verlag New York, Inc., New York, 1997.

GIRIJANANDACHOWDHURYUNIVERSITY

Hathkhowapara, Azara, Guwahati-781017, Assam

CORE COURSES OFFERED BY DEPT. OF MATHEMATICS

BMA23202T	TANADI EV ANALVEIS	L	T	P	C
		3	1	0	4
	nowledge of Complex number				
Course Objectiv					
of Cauchy-	e significance of differentiability of complex functions leading to Riemann equations.				
 To understaintegration. 	and the difference as well as relation between complex line integral.	atio	n and	d real	l line
To understa	and the role of Cauchy-Goursat theorem and the Cauchy integral	fori	mula		
Course Outcome					
After successful of	completion of the course, the students will be able to				
CO1: understand	the differentiation and integration of a complex function.				
CO2: understand	about zeros and singularities of a complex function along with re	sid	ues.		
CO 3: apply vario	ous properties of Cauchy-Riemann equations to analytic functions				
CO 4: apply integ	ral formulae to evaluate complex contour integrals				
CO 4: describe tl	ne convergence of a complex sequence and expand a function	in	Tayl	lor's	
series, Lau	rent's Series				
Module1:Function	ons, Limits, Continuity and Analytic Function			15 H	ours
	mplex variable, Limits involving the point at infinity, cont				
	rmulas. Analytic functions, examples of analytic functions,				
_	- Riemann equations, sufficient conditions for differentiability.	Har	mon	ic fu	nctions,
	es and determination of complex conjugates.				
	exIntegration and Cauchy's Theorem			15 H	
connected regions	of functions.Complex Line Integrals, Real line integrals. So . Cauchy's theorem, Cauchy-Goursat theorem, Cauchy integral's theorem and the fundamental theorem of algebra.				
Module3: Infinit	e Series		1	15 H	ours
Laurent's series, c	ctions, series of functions. Convergence. Power Series: Definition ircle and radius of convergence. Zeros and Singularities, type of tions, Entire functions.				
Meromorphic func					11100
Meromorphic func Module4: Theory	y of Residues			15Ho	ours
Module4:Theory	e, Rouche's theorem, Residues, Calculation of Residues. The Res	idu			

Brown, Ward James and Churchill, Ruel V. Complex Variables and Applications (Eighth

Bak, Joseph and Newman, Donald J. Complex analysis (2nd Edition), Undergraduate Texts in

GIRIJANANDA CHOWDHURY UNIVERSITY

Hathkhowapara, Azara, Guwahati 781017, Assam

CORE COURSES OFFERED BY DEPT. OF MATHEMATICS

	<u> </u>	L	T	P	C
		4	0	0	4
•	andamental knowledge of real number system.				
Course Objectiv					
-	le a deep understanding of the fundamental concepts and principle			-	
line, limit	s of a function and results related to convergence and divergence	of s	seque	ences	and
series of i	real numbers.				
Course Outcome	3• •				
	completion of the course, the students will be able to				
	d fundamental properties of real line R, including completeness a	and.	Arch	imed	ean
propertie					
	d limits of sets and functions and related theorems.				
	d concept of convergence and divergence of infinite series. it theorems to determine the convergence or divergence of real se	0110	naac		
	ious convergence tests to determine the convergence and divergence				
	y and conditionally convergent infinite series	IICC	OI DC	JUII	
Module1:Real N			1	12 Hc	urs
	der properties of real numbers, Inequalities, absolute value, Tr	rian			
· ·	of a set, supremum and infimum, completeness property of R,		_	-	•
	isity theorem, intervals, Characterization of Intervals, nested inte				ucan
property, the der	ISTEV EHEOTETH, THEFEVAIS, CHAFACTELIZATION OF THEFEVAIS, HESTEU THE	11 TO			Tho
		erval	tnec	orem,	The
uncountability of	R	erval			
uncountability of Module2: Limit	S R		1	12 Hc	ours
uncountability of Module2: Limit	R		1	12 Hc	ours
uncountability of Module2: Limits Limit point of a	S R		1	12 Hc	ours
uncountability of Module2: Limits Limit point of a theorems, Squeez	set, limits of a function, sequential criterion for limits, diverge Theorem, one sided limits, infinite limits and limits at infinity.		te cri	12 Hc	ours limit
uncountability of Module2: Limits Limit point of a theorems, Squeez Module3: Seque	set, limits of a function, sequential criterion for limits, diverge Theorem, one sided limits, infinite limits and limits at infinity.	genc	te cri	12 Hoiteria,	limit
uncountability of Module2: Limits Limit point of a theorems, Squeez Module3: Seque Sequences of re	set, limits of a function, sequential criterion for limits, diverge Theorem, one sided limits, infinite limits and limits at infinity. nce al numbers, Limit of a Sequence, Tails of Sequences, Limit	genc	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 Ho iteria, 18 Ho ms, b	limit ours
uncountability of Module2: Limits Limit point of a theorems, Squees Module3: Seque Sequences of re sequence, Squee	set, limits of a function, sequential criterion for limits, diverge Theorem, one sided limits, infinite limits and limits at infinity. nce	genc The	1 1 eorer	12 Ho iteria, 18 Ho ms, b	limit ours ounder
uncountability of Module2: Limits Limit point of a theorems, Squees Module3: Seque Sequences of re sequence, Squee	set, limits of a function, sequential criterion for limits, diverge theorem, one sided limits, infinite limits and limits at infinity. nce al numbers, Limit of a Sequence, Tails of Sequences, Limit ze Theorem, Monotone Sequences, Monotone Convergence Theorems Theorem, Divergence Criteria, Cauchy sequence, Cauchy Convergence Cauchy Cauchy Convergence Cauchy Cauchy Convergence Cauchy	genc The	1 1 eorer em, Sergen	12 Ho iteria, 18 Ho ms, b	limit ours oundeequence iterion
uncountability of Module2: Limits Limit point of a theorems, Squeez Module3: Seque Sequences of re sequence, Squee Bolzano-Weierst Module4:Infinite	set, limits of a function, sequential criterion for limits, diverge theorem, one sided limits, infinite limits and limits at infinity. nce al numbers, Limit of a Sequence, Tails of Sequences, Limit ze Theorem, Monotone Sequences, Monotone Convergence Theorems Theorem, Divergence Criteria, Cauchy sequence, Cauchy Convergence Cauchy Cauchy Convergence Cauchy Cauchy Convergence Cauchy	The	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 Holiteria, 18 Holiteria, 18 Holiteria, 18 Holiteria,	limit ours ounded quence iterion
uncountability of Module2: Limits Limit point of a theorems, Squees Module3: Seque Sequences of re sequence, Squee Bolzano-Weierst Module4:Infinite Infinite series, co	set, limits of a function, sequential criterion for limits, diverge Theorem, one sided limits, infinite limits and limits at infinity. nce al numbers, Limit of a Sequence, Tails of Sequences, Limit ze Theorem, Monotone Sequences, Monotone Convergence Theorems Theorem, Divergence Criteria, Cauchy sequence, Cauchy Conserved	The eore	1 1 2 e cri	12 Ho iteria, 18 Ho ms, b Subse ice Cr 18 Ho y crit	limit ours oundee quence iterion ours eerion,
uncountability of Module2: Limits Limit point of a theorems, Squees Module3: Seque Sequences of re sequence, Squee Bolzano-Weierst Module4:Infinite Infinite series, co Absolute converge	set, limits of a function, sequential criterion for limits, diverge theorem, one sided limits, infinite limits and limits at infinity. Ince all numbers, Limit of a Sequence, Tails of Sequences, Limit theorem, Monotone Sequences, Monotone Convergence Theorems, Divergence Criteria, Cauchy sequence, Cauchy Convergence and divergence of infinite series, The n-thTerm Test gence, Tests for Absolute Convergence: Comparison test, Limit	The eore tt, C	e cri eorer em, S ergen auch	12 Ho iteria, 18 Ho ms, b Subsecce Cr 18 Ho y crit	limit ours ounded quence iterion ours erion, Test,
uncountability of Module2: Limits Limit point of a theorems, Squees Module3: Seque Sequences of re sequence, Squee Bolzano-Weierst Module4:Infinite Infinite series, co Absolute converge	set, limits of a function, sequential criterion for limits, diverge theorem, one sided limits, infinite limits and limits at infinity. Ince all numbers, Limit of a Sequence, Tails of Sequences, Limit theorem, Monotone Sequences, Monotone Convergence Theorems, Theorem, Divergence Criteria, Cauchy sequence, Cauchy Convergence and divergence of infinite series, The n-thTerm Test	The eore tt, C	e cri eorer em, S ergen auch	12 Ho iteria, 18 Ho ms, b Subsecce Cr 18 Ho y crit	limit ours ounded quence iterion ours erion, Test,
uncountability of Module2: Limits Limit point of a theorems, Squeez Module3: Seque Sequences of re sequence, Squee Bolzano-Weierst Module4:Infinite Infinite series, co Absolute converg Ratio test, Root	set, limits of a function, sequential criterion for limits, diverge theorem, one sided limits, infinite limits and limits at infinity. Ince all numbers, Limit of a Sequence, Tails of Sequences, Limit theorem, Monotone Sequences, Monotone Convergence Theorems, Theorem, Divergence Criteria, Cauchy sequence, Cauchy Convergence and divergence of infinite series, The n-thTerm Test gence, Tests for Absolute Convergence: Comparison test, Limit test, Raabe's Test, Alternating series, Alternating Series Test, The	The eore tt, C	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 Ho iteria, 18 Ho ms, b Subsecce Cr 18 Ho y crit	limit ours ounded quence iterion ours erion, Test, Abel

2011. **Reference Books**

- 1. Kumar A. and Kumaresan S., Basic Course in Real Analysis, CRC Press, 2014.
- 2. Ponnusamy S., Foundations of mathematical analysis. Springer Science & Business Media, 2011.

1. Bartle R.G. and Sherbert D. R., Introduction to Real Analysis, 4th Ed., John Wiley and Sons,

GIRIJANANDA CHOWDHURY UNIVERSITY

Hathkhowapara, Azara, Guwahati-781017, Assam

BMA23204T GROUP THEORY | L | T | P | C | | 4 | 0 | 0 | 4

Pre-requisite: Knowledge of Mathematics at Class XI & XII

Course Objectives:

- To Introduce the fundamental concepts and topics of abstract algebra
- To demonstrate the symmetric groups and groups of symmetry
- To Study Fermat's Little theorem as a consequence of the Lagrange's theorem on finite groups.

Course Outcome:

After successful completion of the course, the students will be able to

CO1: recognize the different mathematical objects as groups.

CO2: understand cyclic groups, permutation groups, and different subgroups.

CO3: explain the significance of the notion of cosets, normal subgroups and factor groups.

CO4: learn about Lagrange's theorem and Fermat's Little theorem along with group homomorphism and group isomorphism.

Module 1: Introduction to Groups

20 Hours

Groups: Definition, examples and Properties. Symmetries of a square, Dihedral groups, Order of a group, Order of elements of a group. Subgroups, Center of a group.

Module 2: Cyclic Group and Permutation Group

15 Hours

Cyclic Groups, Properties of Cyclic group, Fundamental theorem of cyclic groups. Permutations, Permutation Groups, Odd and Even permutations, Alternating groups.

Module 3: Cosets and Lagrange's Theorem

15 Hours

Cosets, Properties of cosets, Lagrange's theorem, Fermat's Little theorem. Normal subgroups, Factor groups, Cauchy's theorem for finite abelian groups.

Module 4: Group Homomorphism and Isomorphism

20 Hours

Group homomorphism, properties of homomorphism, Kernel of a group homomorphism, Fundamental theorem of Homomorphism, Cayley's theorem, Isomorphism, Properties of isomorphism, First isomorphism theorem.

Total Lecture hours 60 hours

Text Book(s)

1. Gallian J. A., Contemporary Abstract Algebra (8th Edition), Cengage Learning India Pvt. Ltd. Delhi, Fourth impression, (2015)

Reference Books

- 1. Fraleigh John B., A First Course in Abstract Algebra, 7th Edition, (2001)
- 2. Singh S., Zameeruddin Q., Modern Algebra, 6th Edition, S Chand And Company Ltd. (2021)
- 3. Dummit David S. and Foote Richard M., Abstract Algebra (2nd Edition), John Wiley and Sons (Asia) Pvt. Ltd, Singapore, (2003)
- 4. Bhattacharya P.B., Jain S.K., Nagpaul S. R., Basic Abstract Algebra, (Ebook 2nd Ed), Cambridge University Press, (2009)
- 5. Herstein I. S., Topics in Algebra (Ebook 2nd Ed), John Wiley & Sons, (1975)

GIRIJANANDA CHOWDHURY UNIVERSITY

Hathkhowapara, Azara, Guwahati 781017, Assam

	CORE (ELECTIVE) COURSES OFFERED BY DEPT. OF MATHEMATICS				
BMA23220T	SETS AND LOGIC	L	T	P	C
		4	0	0	4
Pre-requisite: H	ligh School Mathematics			,	
Course Objectiv	'es:				
 To provid 	de a deep understanding of the foundational principles of set the	ory, r	nathe	ematio	cal
logic and	related applications.				
Course Outcom					
After successful	completion of the course, the students will be able to				
CO1: understand	d foundational principles of set theory.				
CO2: apply inclu	usion-exclusion principle to solve related problems.				
	I the concepts of relations and functions within sets, including th	eir p	roper	ties, a	and
CO4: apply know	wledge of tautologies and contradictions to identify and construc	t log	ical s	taten	ients.
CO5: apply prop	positional functions and quantifiers to formalize logical statement involving predicates.	_			
Module 1: Sets	involving predicates.			15 E	Iours
vioune 1. Sets				131	toui

Sets, subset, superset, universal set, empty set, disjoint sets, Venn diagrams, set operations: union and intersection, complements, differences, symmetric differences; Algebra of sets, finite sets, counting principle, inclusion-exclusion principle, classes of sets, power sets, partitions, principle of mathematical induction.

Module 2: Relations & functions

15 Hours

Product sets, relations, inverse relation, pictorial representatives of relations, composition of relations, types of relations, equivalent relations, partial ordering relations, functions, composition function, oneto-one, onto, and invertible functions, indexed classes of sets, cardinality.

Module 3: Logic 15 Hours

Propositions and compound statements, basic logical operations: conjunction, disjunction, negation; propositions and truth tables, tautologies and contradictions, logical equivalence.

Module 4: Algebra of Propositions

15 Hours

Algebra of propositions, conditional and bi-conditional statements, arguments, propositional functions, quantifiers, negation of quantified statements.

Total Lecture hours

60 Hours

Text Book(s)

1. Seymour L. and Marc Lars L., Theory and problems of discrete mathematics. Schaums Outline Series McGraw Hill, 2007.

Reference Books

- 1. Halmos P.R., Naive Set Theory, Springer, 1974.
- 2. Kamke E., Theory of Sets, Dover Publishers, 1950.

GIRIJANANDA CHOWDHURY UNIVERSITY, ASSAM Hatkhowapara, Azara, Guwahati 781017, Assam

CORE (ELECTIVE) COURSES OFFERED BY DEPT. OF MATHEMATICS

BMA23221T	INTRODUCTION TO PROBABILITY	L	Т	P	C
		4	0	0	4
Pre-requisite: B	asic properties of Set				
Course Objectiv	es				
To provid	e an overview of probability to the students				
• To make	the students familiar with the basic concepts and tools whi	ich a	are n	eede	d to
study situ	ations involving uncertainty or randomness.				
Course Outcome	е				
After successful	completion of this course, the students will be able to				
CO1: un	derstand about basic probability and its applications				
CO2: for	rmulate and solve problems involving random variables.				
	derstand about various univariate distributions such as Binon ormal distributions.	nial,	Pois	sson a	and
CO4: app	bly the theory of distributions to study the joint behavior of two	o rai	ndon	ı	
vai	riables.				
Module 1: Basic	Probability		15	hour	'S
Probability space	es, Conditional probability, Multiplicative law of Probab	ility	, Inc	deper	ıdent
events; Bayes' th	eorem			_	
Module 2: Rand	om variable		15	hour	'S
Definition, Disc	rete and continuous random variables, Properties, Disc	crete	Pr	obab	lity
Distribution, Mea	an and Variance of Random variable				
	ability distribution			hou	
,	Binomial, Poisson and Normal distribution, Mean and Varia				
	ribution, Basic properties of Normal distribution, Standard	fori	m of	Nor	mal
distribution.					
	ginal distribution			hour	
Marginal distrib	distribution function and its properties, Joint probability utions, Expectation of function of two random variables on, Conditional distributions and expectations.		-		
Total Lecture he	1		60	hou	rs
Text Book(s)					
1 Bali, N. P., C Reprint, 2014	Soyal M., A text book of engineering Mathematics, Laxmi Pu	blica	ation	ıs,	
2 Ross S. M., I	ntroduction to Probability Models (11th ed.). Elsevier Inc., 20	014			
Reference Book	(s)				
1 Hoel P. G., P Stall, 2003 (F	ort S. C and Stone C. J., Introduction to Probability Theory, Reprint)	, Uni	ivers	al Bo	ok