FOURTH EDITION/2023-2024

CONSTRUCT

TECHNICAL MAGAZINE OF THE DEPARTMENT OF CIVIL ENGINEERING

GIRIJANANDA CHOWDHURY UNIVERSITY

HATHKHOWAPARA, AZARA, GUWAHATI - 17

FOURTH EDITION/2023-2024

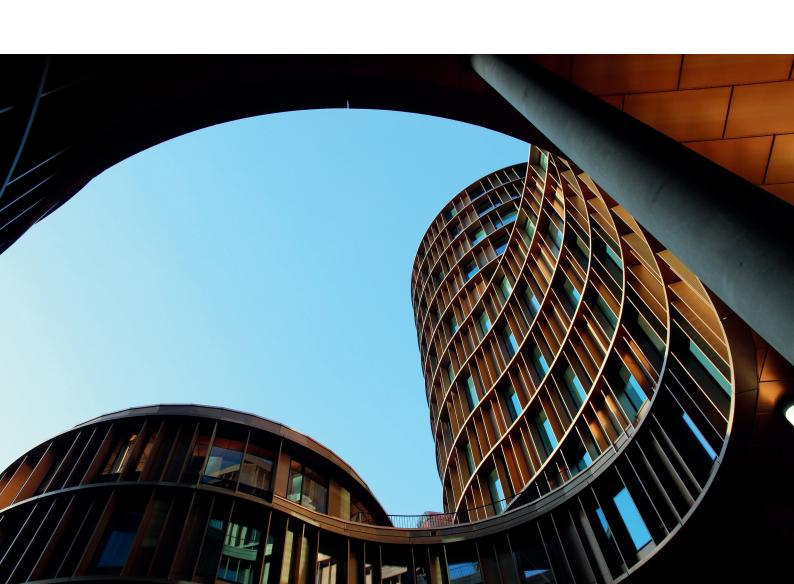
CONSTRUCT

TECHNICAL MAGAZINE OF THE DEPARTMENT OF CIVIL ENGINEERING

With Best Compliments From	
То,	
	Editorial Board, CONSTRUCT

EDITORIAL BOARD

Faculty Editor: Dr. Pallab Jyoti Das


Faculty Co-editor: Mrs. Monirupa Mishra

Student Editor: Ms. Ipseeta Bharadwaj

Student Members: Mr. Dheemaan Deka

Mr. Mrinmoy Borah

Ms. Munmi Rajbongshi

MESSAGE FROM HOD

It is with great pride that I present the fourth edition of the Department of Civil Engineering Technical Magazine 'CONSTRUCT'. Over the years, this magazine has become a dynamic platform for our students and faculty to share knowledge, showcase innovative ideas, and highlight research advancements in the ever-evolving field of Civil Engineering.

Civil Engineering continues to play a pivotal role in building sustainable, resilient, and technologically advanced infrastructure. This edition reflects the enthusiasm and creativity of our students in exploring emerging trends, addressing real-world challenges, and pushing the boundaries of conventional engineering practice.

I would like to acknowledge the tireless efforts of the editorial team, faculty mentors, and all contributors who have made this edition possible. Their dedication ensures that CONSTRUCT remains not just a magazine, but a source of inspiration, learning, and innovation for the entire department.

I am confident that this fourth edition will encourage our students to pursue academic excellence, embrace research opportunities, and contribute meaningfully to the advancement of Civil Engineering.

Prof. S. Robert Ravi Head of the Department Civil Engineering

FROM THE EDITOR'S DESK

We are delighted to present the fourth edition of the Department of Civil Engineering Technical Magazine 'CONSTRUCT'. With each passing edition, CONSTRUCT has grown into a vibrant platform for showcasing the technical knowledge, research initiatives, and innovative ideas of our students and faculty. This edition continues that tradition, reflecting the dynamic spirit of our department.

Civil Engineering is evolving rapidly, with new technologies, sustainable practices, and smart infrastructure shaping the future of the built environment. This edition captures that progress, highlighting contributions that demonstrate creativity, analytical thinking, and practical problem-solving skills.

The journey of creating this magazine has been both exciting and enriching. We sincerely thank our faculty mentors for their guidance, the contributors for their enthusiasm, and the editorial team for their dedication in bringing this edition to life. Every article, illustration, and insight reflects a collective effort to inspire and inform.

We hope that this fourth edition of CONSTRUCT ignites curiosity, motivates innovation, and strengthens the culture of research and learning within our department. With continued support from our peers and mentors, we look forward to taking CONSTRUCT to even greater heights in the years ahead.

Students' Editorial Team
Department of Civil Engineering

CONTENTS

FACULTY INSIGHTS	PAGE NO.
Wastewater Treatment and Reuse Technologies	1
Smart Materials and Adaptive Structures	3
Highway Safety and Accident Analysis	5
Risk Management in Infrastructure Projects	7
STUDENT'S ARTICLES	PAGE NO.
Groundwater Contamination and Its Remediation Technologies	9
Impact of Climate Change on Urban Hydrology and Flood	11
Interaction Between Surface Water and Groundwater	14
Rang Ghar: A Historical Venue	16
Sectional Views: Understanding Internal Features in Complex Design	18
The Great Assam Earthquake	20
Comparison of Bricks and AAC Blocks	22
Importance of Scale and Dimensioning in Engineering Drawings	24
Water Pollution and Its Control Measures	26
Errors in Chain Surveying and Their Corrections	29

WASTEWATER TREATMENT AND REUSE TECHNOLOGIES

Water scarcity has become one of the most pressing global challenges of the 21st century, driven by rapid urbanization, industrial growth, and climate change. In this context, wastewater treatment

- 1. Agricultural irrigation and landscape watering.
- 2. Industrial cooling and process water.
- 3. Groundwater recharge through percolation or aquifer storage.
- 4. Urban non-potable uses such as toilet flushing, street cleaning, and construction activities.

In some advanced cases, indirect potable reuse is practiced, where treated water is introduced into natural water bodies before further purification for drinking.

Challenges and the Way Forward

While the benefits of wastewater reuse are significant, challenges and reuse technologies play a pivotal role in ensuring sustainable water management and environmental protection. Rather than viewing wastewater as a waste product, modern engineering approaches consider it a valuable resource for recovery and reuse.

Stages of Wastewater Treatment

Wastewater treatment involves a series of physical, chemical, and biological processes aimed at removing contaminants and restoring water quality to acceptable standards. The treatment process generally includes:

- 1. **Primary Treatment:** Physical processes such as screening and sedimentation remove large solids, floating materials, and settleable particles from the raw wastewater.
- 2. Secondary Treatment: Biological treatment follows, where microorganisms break down organic matter. Common methods include the activated sludge process, trickling filters, and sequencing batch reactors (SBR). These processes significantly reduce the biochemical oxygen demand (BOD) and suspended solids.
- 3. **Tertiary or Advanced Treatment:** This stage refines water quality through processes such as membrane filtration (UF/RO), ion exchange, ozonation, or UV disinfection. Advanced treatment ensures the removal of nutrients, pathogens, and micropollutants to meet reuse standards.

WASTEWATER TREATMENT AND REUSE TECHNOLOGIES

Emerging Technologies

Recent advances in civil and environmental engineering have introduced several innovative wastewater treatment technologies:

- 1. **Membrane Bioreactors (MBR):** Combine biological treatment and membrane filtration for high-quality effluent suitable for reuse.
- 2. **Constructed Wetlands:** Use natural vegetation and microbial processes to treat wastewater in an eco-friendly and cost-effective way.
- 3. Electrocoagulation and Advanced Oxidation Processes (AOPs): Efficiently remove toxic and non-biodegradable contaminants.
- 4. **Anaerobic Digesters:** Generate biogas as a renewable energy source while treating high-strength industrial effluents.

Reuse Applications

Treated wastewater is increasingly being reused for various purposes remain in terms of public perception, regulatory frameworks, and cost of advanced treatment systems. There is a growing need for policies promoting decentralized treatment systems, low-energy technologies, and integrated water management approaches.

Conclusion

Wastewater treatment and reuse represent the future of sustainable water resource management. For civil engineers, the focus must shift toward designing efficient, resilient, and eco-friendly treatment systems that align with the principles of the circular economy. As technology advances, treated wastewater will no longer be seen as waste but as a key element in building water-secure and sustainable communities.

Submitted by-Mr. Uddipan Das Assistant Professor Department of Civil Engineering

SMART MATERIALS AND ADAPTIVE STRUCTURES

In the age of rapid technological progress, the field of Civil Engineering is evolving beyond traditional design concepts toward intelligent, responsive, and self-sustaining systems. Smart materials and adaptive structures represent one of the most revolutionary advancements in this direction, enabling structures to sense, respond, and adapt to changing environmental and loading conditions.

What Are Smart Materials?

Smart materials are engineered substances that possess the ability to alter one or more of their properties—such as shape, stiffness, or electrical conductivity—when exposed to external stimuli like temperature, stress, moisture, or magnetic fields.

Common examples include:

- Shape Memory Alloys (SMA): Metals that can return to a pre-defined shape after deformation when heated.
- Piezoelectric Materials: Generate electrical charges under mechanical stress and conversely deform when an electric field is applied.
- Magnetorheological (MR) and Electrorheological (ER) Fluids: Change their viscosity in response to magnetic or electric fields, allowing for controllable damping systems.
- Fiber Optic Sensors: Embedded in concrete or steel to monitor strain, temperature, or cracks in real time.

Adaptive Structures in Civil Engineering

Adaptive structures integrate smart materials and sensors to monitor their own health, adjust to loads, and maintain optimal performance throughout their lifespan. In essence, these structures mimic biological systems that can sense and respond to their environment. Applications include:

- Smart bridges equipped with piezoelectric or fiber optic sensors to detect stress and vibration, enabling early damage detection.
- Intelligent buildings that adjust window shading, ventilation, and structural stiffness to improve comfort and energy efficiency.
- Base isolation and damping systems using MR fluids to automatically modify stiffness and damping during earthquakes.

SMART MATERIALS AND ADAPTIVE STRUCTURES

Benefits of Smart and Adaptive Systems

- 1. Enhanced Safety: Continuous health monitoring helps detect damage before catastrophic failure.
- 2. Sustainability: Real-time control and maintenance reduce material wastage and extend service life.
- 3. Energy Efficiency: Adaptive systems minimize energy use by optimizing performance.
- 4. Cost Savings: Predictive maintenance reduces inspection frequency and repair costs.

Challenges and Future Outlook

While promising, the adoption of smart materials in civil infrastructure faces challenges:

- High initial cost and limited large-scale field data.
- Durability concerns under harsh environmental conditions.
- Integration issues between traditional construction materials and smart components.

Ongoing research is addressing these through hybrid materials, embedded sensor networks, and data-driven control algorithms. With the growth of artificial intelligence (Al) and Internet of Things (IoT) integration, future adaptive structures are expected to evolve into self-learning systems capable of autonomous diagnosis and repair.

Conclusion

The convergence of smart materials and adaptive structures marks a transformative era for Civil Engineering. Beyond providing strength and stability, tomorrow's infrastructure will possess the intelligence to sense, react, and adapt, ensuring resilience, efficiency, and sustainability. Civil engineers must therefore embrace these innovations to build the responsive, adaptive, and sustainable cities of the future.

Submitted by- **Dr. Pallab Jyoti Das** Assistant Professor Department of Civil Engineering

HIGHWAY SAFETY AND ACCIDENT ANALYSIS

Highways play a vital role in supporting economic growth and connecting communities. However, with the increasing number of vehicles and higher travel speeds, road safety has become a critical concern in transportation engineering. Highway safety and accident analysis are essential aspects of highway design and traffic management, aimed at minimizing crashes, reducing fatalities, and improving the overall efficiency of the transportation system.

1. Importance of Highway Safety

Highway safety focuses on designing, operating, and maintaining roads to reduce the risk and severity of accidents. A safe highway system ensures:

- Protection of human life and property,
- Reduction in traffic congestion and economic loss,
- Improved public confidence and accessibility, and
- Support for sustainable transportation practices.

Safety is considered at every stage—from planning and design to construction and operation.

2. Causes of Road Accidents

Accidents are generally caused by a combination of human, vehicle, and roadway factors.

- Human factors: Over-speeding, fatigue, alcohol consumption, distraction (mobile phones), and violation of traffic rules.
- Vehicle factors: Brake failure, tire burst, poor maintenance, or inadequate lighting.
- Roadway and environmental factors: Poor geometric design, inadequate signage, potholes, low skid resistance, and insufficient visibility during adverse weather.

Identifying these causes helps engineers develop strategies to prevent recurrence of similar incidents.

3. Accident Data Collection and Analysis

Accident analysis begins with systematic data collection, which includes:

- Location and time of the accident,
- Type and number of vehicles involved,
- Road geometry and surface condition,
- Weather and lighting conditions, and
- Severity of injuries or fatalities.

This data is analyzed using statistical methods and GIS-based mapping to identify black spots — high-risk locations where accidents occur frequently.

HIGHWAY SAFETY AND ACCIDENT ANALYSIS

4. Methods of Accident Analysis

Several analytical techniques are used to understand accident patterns and recommend countermeasures:

- Spot and corridor analysis: To identify specific problem areas.
- Before-and-after studies: To evaluate the effectiveness of safety improvements.
- Regression analysis and crash prediction models: To estimate accident frequencies based on traffic volume and road features.
- Conflict analysis techniques: To assess near-miss situations and potential risks.

5. Highway Safety Measures

To reduce the likelihood and severity of accidents, engineers adopt several safety measures, including:

- Geometric design improvements: Proper sight distance, super-elevation, and lane width.
- Traffic control devices: Use of signs, signals, and road markings for driver guidance.
- Roadside safety: Guardrails, crash barriers, and clear zones to minimize impact severity.
- Pavement management: Regular maintenance to prevent skidding and surface damage.
- Intelligent Transportation Systems (ITS): Real-time traffic monitoring, automated enforcement, and driver assistance technologies.

6. Role of Road Safety Audits

A Road Safety Audit (RSA) is a formal and systematic examination of a road project by an independent, qualified team. It evaluates the design at various stages—feasibility, detailed design, construction, and operation—to identify potential safety hazards and recommend corrective actions before the road becomes operational.

Conclusion

Ensuring highway safety requires a multidisciplinary approach involving civil engineers, transportation planners, law enforcement, and the public. Through effective accident analysis, black spot identification, and data-driven safety interventions, it is possible to significantly reduce road crashes and enhance mobility. As technology advances, integrating smart sensors, connected vehicles, and data analytics will pave the way toward zero-fatality highways, a future where transportation is not only efficient but also safe for every road user.

Submitted byMs. Nitisha Mazumdar
Assistant Professor
Department of Civil Engineering

RISK MANAGEMENT IN INFRASTRUCTURE PROJECTS

Infrastructure projects such as highways, bridges, airports, water supply networks, and metro systems are the backbone of national development. However, these projects are often characterized by high capital investment, long gestation periods, and complex technical and financial arrangements, making them inherently prone to risk. Effective risk management is therefore essential to ensure that such projects are completed on time, within budget, and to the desired quality standards.

1. Understanding Risk in Infrastructure Projects

In the context of project management, risk refers to any uncertain event or condition that, if it occurs, can have a positive or negative effect on project objectives such as cost, schedule, scope, or quality.

Infrastructure projects face a wide range of risks, which can be broadly classified as:

- Technical risks: Design errors, construction defects, or technological failures.
- Financial risks: Inflation, exchange rate fluctuations, funding delays, or cost overruns.
- Environmental risks: Natural disasters, extreme weather, or ecological impacts.
- Regulatory and legal risks: Delays in permits, policy changes, or disputes.
- Social and political risks: Public opposition, land acquisition challenges, or changes in government priorities.

Recognizing these risks early allows project managers to plan appropriate mitigation strategies.

2. The Risk Management Process

Risk management in infrastructure projects typically follows a systematic five-step process:

- 1. Risk Identification: Listing all potential risks through brainstorming sessions, expert interviews, and review of historical data.
- 2. Risk Assessment (Qualitative and Quantitative): Evaluating each risk based on its likelihood of occurrence and impact on project outcomes. Tools like risk matrices and probabilistic models (e.g., Monte Carlo simulation) are often used.
- 3. Risk Prioritization: Ranking risks to determine which ones need the most attention and resources.
- 4. Risk Mitigation and Response Planning: Developing strategies such as avoidance, reduction, transfer, or acceptance to manage risks effectively.
- 5. Risk Monitoring and Control: Continuously tracking identified risks, identifying new risks, and ensuring that mitigation measures remain effective throughout the project life cycle.

RISK MANAGEMENT IN INFRASTRUCTURE PROJECTS

3. Common Risk Mitigation Strategies

- Contractual Risk Allocation: Clearly defining responsibilities and liabilities in project contracts (e.g., EPC, PPP models).
- Insurance and Bonds: Transferring financial risks through performance bonds, insurance, or guarantees.
- Contingency Planning: Allocating reserve budgets or time buffers for unforeseen events.
- Use of Technology: Implementing Building Information Modelling (BIM), real-time monitoring systems, and project management software to reduce design and coordination errors.
- Stakeholder Engagement: Maintaining transparent communication with government agencies, contractors, and communities to prevent disputes and delays.

4. Case Example: Risk in Metro Rail Projects

In metro rail construction, risks such as underground utility conflicts, geotechnical uncertainties, and land acquisition issues are common. By employing detailed geotechnical investigations, 3D modeling, and phased construction planning, several modern metro projects have successfully minimized these risks and avoided costly disruptions.

5. Importance of Risk Management

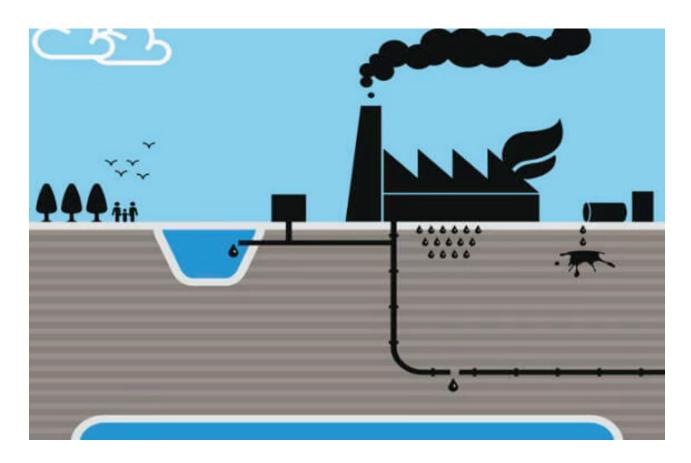
Proactive risk management brings multiple benefits to infrastructure development:

- Reduces cost and schedule overruns.
- Enhances investor and stakeholder confidence.
- Improves resource allocation efficiency.
- Promotes sustainable and resilient infrastructure delivery.

When risk management is embedded into every stage from feasibility to operation, it transforms uncertainty into opportunity, driving long-term project success.

Conclusion

Infrastructure projects will always involve a degree of uncertainty, but systematic risk management enables engineers to navigate these challenges effectively. By integrating technical expertise, advanced analytics, and collaborative decision-making, civil engineers can ensure that critical infrastructure systems are not only efficient and durable but also resilient and adaptable to future uncertainties.


Submitted by-

Ms. Devilata Pegu Assistant Professor Department of Civil Engineering

GROUNDWATER CONTAMINATION AND ITS REMEDIATION TECHNOLOGIES

Groundwater is one of the most important natural resources on Earth, supplying drinking water, supporting agriculture, and sustaining ecosystems. However, contamination of groundwater has become a serious environmental issue due to both natural and human-induced activities. Naturally occurring contaminants such as arsenic, fluoride, and heavy metals can leach from rocks into aquifers, while anthropogenic activities including agriculture, industrial discharge, and urban development have added synthetic chemicals, fertilizers, pesticides, and sewage to groundwater systems. In recent years, emerging contaminants such as pharmaceuticals, personal care products, PFAS, and microplastics have been detected, raising new concerns for water safety and human health.

The types of contaminants found in groundwater are diverse. Inorganic pollutants include heavy metals like arsenic, lead, and chromium, as well as salts and nitrates from agricultural runoff. Organic contaminants such as solvents, petroleum hydrocarbons, pesticides, and herbicides are also common, particularly in industrial and agricultural regions. In addition, radionuclides, pathogens from sewage infiltration, and modern pollutants such as microplastics and pharmaceuticals further complicate the issue.

GROUNDWATER CONTAMINATION AND ITS REMEDIATION TECHNOLOGIES

To address these challenges, various groundwater remediation technologies have been developed. Traditional methods such as pump-and-treat involve extracting contaminated groundwater and treating it above ground, but this approach is often expensive and time-consuming. In situ techniques, which treat contamination directly in the subsurface, have gained popularity. For example, in situ chemical oxidation uses oxidants such as ozone or permanganate to break down organic contaminants, while in situ chemical reduction employs agents like zero-valent iron to detoxify metals and solvents. Permeable reactive barriers, which are filled with reactive materials, allow groundwater to flow through while removing pollutants. Adsorption techniques using activated carbon, clays, or biochar have also proven effective, while bioremediation relies on microorganisms to degrade contaminants under suitable conditions.

Recent advances in remediation include the use of nanotechnology and smart materials. Nanoscale zero-valent iron and other nanomaterials have demonstrated high reactivity and potential for treating persistent contaminants. Hybrid approaches that combine multiple methods, such as bioremediation with chemical oxidation, are being developed to enhance efficiency and overcome the limitations of individual technologies.

In conclusion, groundwater contamination remains a pressing global issue that immediate demands attention. With sources ranging from natural processes to industrial and agricultural activities, the diversity and persistence of contaminants make remediation a complex challenge. While several technologies are available, their effectiveness depends on sitespecific conditions and the nature of pollutants. The future of groundwater protection lies not only in remediation but also in preventive strategies, integrated approaches, sustainable technologies, and frameworks strong regulatory to safeguard this essential resource for generations to come.

Submitted by-Bilakshi Bordolaye Roll No. - 200310001010

IMPACT OF CLIMATE CHANGE ON URBAN HYDROLOGY AND FLOOD MANAGEMENT

Urban areas are centers of population, industry, and infrastructure, but they are also increasingly vulnerable to the effects of climate change. One of the most pressing issues is the way climate change influences 'urban hydrology' the study of how water moves within cities. Unlike rural environments, cities are covered with impervious surfaces such as concrete, asphalt, and rooftops, which drastically alter the natural water cycle. Rainfall that might have infiltrated into the soil instead runs off into drainage systems, often leading to flash floods and waterlogging.

With the onset of climate change, these problems are magnified. Rising temperatures, shifting rainfall patterns, and sea-level rise are reshaping the hydrological balance in cities across the globe. Flood management, already a challenge in many rapidly urbanizing regions, has become more complex under these changing conditions. Understanding how climate change affects urban hydrology and developing adaptive strategies for flood management is critical to safeguarding lives, infrastructure, and economies.

Urban Hydrology Under Normal Conditions

Urban hydrology differs significantly from natural hydrology. In a natural landscape, rainwater is absorbed by soil, replenishes groundwater, and slowly flows into rivers. In contrast, cities are dominated by impervious surfaces that prevent infiltration.

- 1. Runoff increases because water cannot soak into the ground.
- 2. Peak flow is higher meaning that during storms, drainage systems receive water much faster.
- 3. Groundwater recharge decreases creating long-term water scarcity problems.
- 4. Urban streams are flashy with rapid rises and falls in flow levels after rainfall.

Cities rely on stormwater drainage, canals, and engineered infrastructure to handle these altered water flows. However, when rainfall exceeds system capacity, flooding occurs. Climate change amplifies these vulnerabilities.

Impacts of Climate Change On Urban Hydrology

1. Increased Rainfall Intensity: Climate change is linked to shifts in precipitation patterns, often leading to heavier and more intense storms. In cities, this means that stormwater drains are quickly overwhelmed. For example, Mumbai, India, experienced record-breaking rainfall in July 2005, which caused widespread urban flooding and loss of life. Climate models suggest that such extreme events are becoming more frequent.

IMPACT OF CLIMATE CHANGE ON URBAN HYDROLOGY AND FLOOD MANAGEMENT

- 2. Changing Rainfall Frequency and Seasonality: Some regions are witnessing longer dry spells punctuated by sudden, heavy downpours. This "all or nothing" rainfall pattern increases runoff, erosion, and flood risks. In arid or semi-arid cities, stormwater systems designed for moderate rains may fail under these extreme bursts.
- 3. Urban Heat Island Effect: Higher urban temperatures increase evaporation and may intensify local thunderstorms. Cities already tend to be warmer than surrounding rural areas, and climate change adds to this, potentially altering local rainfall distribution and storm severity.
- 4. Rising Sea Levels: Coastal cities are particularly threatened. Sea-level rise, driven by melting ice caps and thermal expansion, increases the risk of tidal flooding and storm surges. Jakarta, for instance, is sinking due to groundwater extraction and facing sea-level rise, creating chronic flooding problems.
- 5. Strain on Infrastructure: Most drainage systems in older cities were designed based on historical climate data. With climate change, rainfall events are often outside the design capacity, leading to frequent overflows, sewer backups, and road flooding.

Flood Risks in Urban Areas

- 1. Flash Floods: Caused by short, intense rainfall events, flash floods overwhelm drainage systems quickly. Narrow streets and blocked drains make this a recurring problem in megacities like Dhaka and Lagos.
- 2. Riverine Floods: When rivers swell due to prolonged rains or upstream floods, urban settlements on riverbanks are submerged. The 2015 Chennai floods in India were partly due to excessive releases from upstream reservoirs.
- 3. Coastal Flooding: Cities such as New Orleans, Miami, and Jakarta face severe threats from storm surges and rising seas. Hurricane Katrina (2005) in New Orleans showed how climate change- enhanced storms can devastate poorly protected urban areas.
- 4. Urban Waterlogging: Even moderate rainfall can paralyze traffic and disrupt daily life in many cities. This type of chronic flooding is common in cities with poor drainage maintenance.

Flood Management Challenges

Urban flood management in the era of climate change faces multiple hurdles:

- 1. Outdated Infrastructure: Many cities have old drainage systems that cannot handle present-day rainfall extremes, let alone future ones.
- 2. Rapid Urbanization: Population growth and unplanned construction increase impervious surfaces and reduce natural drainage pathways such as wetlands.

IMPACT OF CLIMATE CHANGE ON URBAN HYDROLOGY AND FLOOD MANAGEMENT

- 3. Encroachment on Floodplains: Settlements and industries built on natural floodplains or wetlands reduce the space available for water storage.
- 4. Informal Settlements: Poorer communities often live in low-lying, flood-prone areas without adequate protection, making them the most vulnerable.
- 5. Institutional Gaps: Coordination between urban planners, climate scientists, and water managers is often weak, leading to fragmented solutions.

Conclusion

Climate change has significantly altered the relationship between cities and water. Urban hydrology, already modified by impervious surfaces and artificial drainage, is now under added stress from more intense storms, rising seas, and unpredictable rainfall patterns. The consequences are visible in frequent urban floods, damaged infrastructure, economic losses, and human suffering. Flood management in the climate change era cannot rely only on conventional engineering approaches. Instead, it requires integrated strategies that combine modern infrastructure with green solutions, effective urban planning, and strong community participation. Resilient cities of the future will be those that learn to live with water, not just fight against it. Recognizing the impacts of climate change on urban hydrology is the first step toward building such resilient urban environments.

Submitted by-DIPANKAR KUMAR KALITA Roll No.- 210310001014

INTERACTION BETWEEN SURFACE WATER AND GROUNDWATER

Surface water and groundwater are two interconnected components of the hydrologic cycle. Their interaction plays a crucial role in maintaining the balance of water resources, sustaining ecosystems, and influencing water quality and availability. The exchange of water between these two systems occurs continuously through various hydrological processes.

Modes of Interaction

The interaction between surface water (such as rivers, lakes, and wetlands) and groundwater (stored in aquifers) can occur in three main ways:

- a. Gaining Streams (Effluent Streams)
- In this case, groundwater discharges into the stream channel.
- The water table is higher than the streambed.
- Common in humid regions where groundwater recharge is significant.
- Example: Baseflow contribution to perennial rivers during dry seasons.
- b. Losing Streams (Influent Streams)
- Surface water seeps downward to recharge the underlying aquifer.
- The water table lies below the streambed.
- Common in arid or semi-arid regions.
- Example: Streams that lose flow as they traverse permeable alluvial plains.
- c. Perched or Disconnected Systems
- Occurs when an unsaturated zone exists between the surface water body and the groundwater table.
- Limited exchange of water takes place.
- Often observed in areas with deep water tables or low-permeability layers.

Factors Influencing the Interaction

- Hydraulic gradient: Determines the direction of flow between groundwater and surface water.
- Permeability of sediments: Controls the rate of exchange; higher permeability leads to greater interaction.
- Seasonal variations: Rainfall, evapotranspiration, and water table fluctuations affect the exchange rate.
- Human activities: Groundwater extraction, dam construction, and land-use changes can alter natural flow dynamics.

INTERACTION BETWEEN SURFACE WATER AND GROUNDWATER

Importance of Surface Water-Groundwater Interaction

- Maintains river flow: Baseflow from groundwater sustains streamflow during dry periods.
- Supports ecosystems: Wetlands, riparian zones, and aquatic habitats depend on balanced interactions.
- Affects water quality: Pollutants can move from one system to another, impacting both groundwater and surface water quality.
- Water management: Understanding interactions is essential for sustainable water resource planning and drought management.

Measurement and Assessment Techniques

- Hydraulic head measurements using piezometers.
- Seepage meters to estimate flow exchange.
- Tracer studies (using isotopes or dyes) to track water movement.
- Numerical modeling to simulate groundwater-surface water interactions under various conditions.

Conclusion

The interaction between surface water and groundwater is a dynamic process vital for maintaining hydrological balance, ecological health, and water resource sustainability. Effective management requires an integrated approach that considers both systems as part of a unified hydrologic continuum.

Submitted by-Konika Pegu 210310001029

RANG GHAR: A HISTORICAL VENUE

Rang Ghar, often referred to as the "Colosseum of the East," is one of the oldest surviving amphitheatres in Asia. Located near Sivasagar, in the Indian state of Assam, it stands as a glorious testament to the rich cultural and architectural heritage of the Ahom dynasty. Built during the reign of Swargadeo Pramatta Singha (1744–1751), Rang Ghar served as a royal pavilion from which the Ahom kings and nobles witnessed sports and cultural events.

Architectural Features

Rang Ghar is a two-storied oval-shaped structure constructed primarily with bricks and a mixture of rice powder and eggs as a traditional adhesive mortar. The building's design reflects a blend of indigenous Ahom architecture and local craftsmanship. The roof, shaped like an Ahom royal boat (Nahor Dolong), adds a distinctive aesthetic value to the structure. The amphitheatre's elevated galleries provided a commanding view of the sports field, which was located in front of the pavilion.

Historical Significance

Rang Ghar holds immense historical importance as one of the earliest known sports pavilions in Asia. It was used by the Ahom royalty to watch various traditional games, especially buffalo fights (Moh-Juj), elephant fights, and other festive performances organized during Bohag Bihu and other royal celebrations. Beyond sports, Rang Ghar symbolized the Ahom rulers' appreciation of art, culture, and community entertainment, reflecting the socio-political harmony of that era.

RANG GHAR: A HISTORICAL VENUE

Cultural Legacy and Preservation

Today, Rang Ghar stands as a protected monument under the Archaeological Survey of India (ASI) and continues to attract historians, architects, and tourists from across the world. Despite centuries of exposure to natural elements and occasional damage due to earthquakes, it remains a powerful symbol of Assam's glorious past and architectural brilliance.

Conservation efforts are ongoing to preserve the site as part of India's national heritage and to highlight its historical significance as one of the earliest examples of a sports viewing gallery in Asia.

Conclusion

Rang Ghar is not merely an architectural monument; it represents the spirit of celebration, unity, and cultural sophistication of the Ahom civilization. As a historical sports venue, it stands as a proud reminder that organized sports and public festivities have been an integral part of Indian culture for centuries.

Submitted by-TRISHNA DEVI 210310001047

SECTIONAL VIEWS: UNDERSTANDING INTERNAL FEATURES IN COMPLEX DESIGN

In the field of engineering graphics, architecture, and product design, sectional views play a vital role in conveying details that cannot be shown clearly through ordinary views. A sectional view is a drawing that shows the inside features of an object as if it has been cut along a plane. This technique helps designers, engineers, and manufacturers to understand complex parts with accuracy.

PURPOSE OF SECTIONAL VIEWS

- 1. Clarity of hidden details Sectional views expose interior features like holes, slots, ribs, and cavities which are difficult to interpret from external views.
- 2. Reduction of confusion By avoiding excessive hidden lines, sectional drawings make interpretation easier.
- 3. Communication in design They provide a common visual language for engineers, architects, and manufacturers.
- 4. Accuracy in production Ensures that workers understand the exact shapes, dimensions, and relationships of parts.

TYPES OF SECTIONAL VIEWS

1. Full Section

- The object is cut completely along a plane.
- Used when the internal features are symmetric and need to be shown clearly.

2. Half Section

- One half of the object is shown in section while the other half remains in external view.
- Useful for symmetric objects like cylinders or bearings.

3. Offset Section

- The cutting plane is bent to pass through multiple feature that lie in different planes.
- Common in complex parts where all important features must be displayed in one view.

4. Broken-out Section

- Only a small area of the object is cut out to show localized details.
- Saves drawing effort and avoids unnecessary full sections.

5. Revolved and Removed Sections

- Revolved: A sectional shape is rotated in place on the view.
- Removed: The section is drawn outside the main view for clarity.

SECTIONAL VIEWS: UNDERSTANDING INTERNAL FEATURES IN COMPLEX DESIGN

CONVENTIONS IN SECTIONAL DRAWINGS

- Hatching (Section Lines): Thin, equally spaced lines drawn at 45° angles to represent cut surfaces.
- No hatching for standard parts: Shafts, bolts, nuts, and ribs are usually left unhatched.
- Cutting plane lines: Represented by thick lines with arrows indicating the direction of slight.

APPLICATIONS IN GRAPHIC AND DESIGN FIELDS

- Mechanical Engineering: To represent machine parts, assemblies, and internal mechanisms.
- Architecture: To show floor plans, wall thickness, door and window positions, and service layouts.
- Product Design: To visualize how different materials and components fit together.
- Education & Training: Used in technical drawing courses to improve visualization and drawing interpretation skills.

CONCLUSION

Sectional views are an essential tool in graphics and design because they provide a deeper understanding of internal structures that cannot be expressed with ordinary projections. Mastering sectional drawing techniques enhances clarity, accuracy, and communication in design, ultimately leading to better problem-solving and innovation in engineering and architecture.

Submitted by-DARSHANA BARUAH 200310001014

THE GREAT ASSAM EARTHQUAKE

The Great Assam Earthquake of 1950 is one of the most powerful and devastating earthquakes in recorded history. It occurred on 15 August 1950 at around 7:39 PM (IST) and had a magnitude of 8.6 on the Richter scale, making it the largest recorded earthquake in India and one of the strongest continental earthquakes in the world. The epicenter was located near the Indo-China border, in the Assam-Tibet region.

Tectonic Background

The earthquake occurred due to the collision between the Indian and Eurasian tectonic plates, a zone that forms the Himalayan mountain range. The 1950 earthquake was a shallow-focus event, occurring at a depth of about 20 km, which amplified its destructive power on the surface.

The seismic activity was accompanied by massive aftershocks, landslides, and ground fissures, severely affecting the northeastern region of India.

Impact and Damage

The earthquake caused widespread devastation across Assam, Arunachal Pradesh, and parts of Tibet.


- The towns of Dibrugarh, Sadiya, Tezpur, and North Lakhimpur were among the worst affected.
- Thousands of houses, bridges, and roads were destroyed.
- The Brahmaputra River changed its course in several places due to landslides and ground subsidence.
- Massive landslides blocked rivers, creating temporary natural dams that later burst, leading to catastrophic floods.
- The official death toll was estimated at around 1,500 people, though the actual number may have been higher due to the remote and inaccessible terrain.

Environmental Effects

The earthquake had significant geomorphological impacts on the landscape:

- Large areas of forest were submerged or destroyed.
- The Subansiri River was blocked by a massive landslide, forming a temporary lake about 25 km long.
- When the landslide dam later breached, it caused devastating downstream flooding.
- Riverbeds were uplifted, and new channels were formed, permanently altering the hydrography of the region.

THE GREAT ASSAM EARTHQUAKE

Scientific and Historical Significance

The Great Assam Earthquake provided valuable data for the study of intraplate and continental earthquakes. It was one of the first large earthquakes to be instrumentally recorded and studied in detail in South Asia. It highlighted the need for earthquake-resistant construction and disaster preparedness in seismically active regions like the Himalayas and Northeast India.

Conclusion

The 1950 Great Assam Earthquake remains a landmark event in India's geological and disaster history. It demonstrated the immense power of natural forces shaping the Himalayan region and underscored the importance of scientific understanding and preparedness to mitigate the effects of such disasters. Even today, its legacy continues to remind us of the vulnerability and resilience of the people living in one of the most seismically active regions of the world.

Submitted by-JIMONI BORAH 200310001026

COMPARISON OF BRICKS AND AAC BLOCKS

In the ever-evolving world of construction, the choice of building materials plays a crucial role in determining the strength, durability, and sustainability of a structure. Among the commonly used walling materials, traditional clay bricks and Autoclaved Aerated Concrete (AAC) blocks stand out as two popular options. While bricks have been used in construction for centuries, AAC blocks have emerged as a modern, eco-friendly, and efficient alternative, particularly suited for contemporary building requirements.

What Are Bricks and AAC Blocks?

Clay bricks are made from natural clay mixed with water, shaped into molds, and fired at high temperatures in kilns. This process gives them hardness and durability.

On the other hand, AAC blocks are lightweight precast building materials made from a mixture of cement, lime, fly ash, gypsum, and aluminum powder. These are cured under high-pressure steam in an autoclave, which gives them their porous, aerated structure and superior thermal insulation properties.

Comparison Between Bricks and AAC Blocks

Traditional clay bricks are known for their strength and familiarity in the Indian construction industry. However, they are relatively heavy and consume a large amount of fertile topsoil and energy during production. In contrast, AAC blocks are about three to four times lighter than bricks, which reduces the dead load on the structure and allows for faster construction. From a thermal efficiency perspective, AAC blocks clearly outperform bricks. Their air-filled microstructure acts as a natural insulator, keeping interiors cooler in summer and warmer in winter — a key advantage in tropical climates like India's. This also results in significant energy savings in buildings using air-conditioning systems.

When it comes to dimensional accuracy, AAC blocks are factory-made and uniform, allowing for thin jointing mortar and a smoother finish. Bricks, however, often vary in size, requiring thicker mortar joints and more plastering work.

COMPARISON OF BRICKS AND AAC BLOCKS

In terms of eco-friendliness, AAC blocks have a clear edge. They utilize industrial waste such as fly ash, helping to minimize environmental pollution, whereas brick manufacturing depletes topsoil and emits large amounts of carbon dioxide due to the burning process in kilns.

While AAC blocks offer numerous advantages, they also have a few limitations. They are more brittle than bricks and require careful handling during transportation and installation. Additionally, the initial cost of AAC blocks is slightly higher, and availability in rural areas remains limited compared to traditional bricks.

Advantages of AAC Blocks Over Bricks

- 1. Lightweight and easy to handle, reducing structural load and foundation costs.
- 2. Excellent thermal and sound insulation, leading to better energy efficiency.
- 3. Environmentally sustainable, utilizing fly ash and reducing carbon footprint.
- 4. Faster construction, due to larger size and precision in dimensions.
- 5. Better fire resistance, making them suitable for modern buildings and high-rises.

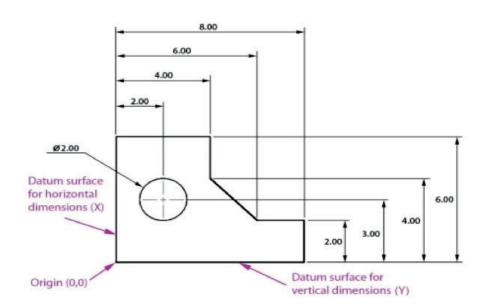
Conclusion

Both clay bricks and AAC blocks have their own advantages and limitations. Clay bricks continue to be a reliable and affordable option for small-scale and traditional constructions. However, with growing emphasis on sustainability, energy efficiency, and structural economy, AAC blocks are gradually becoming the preferred choice in modern construction practices. Their lightweight nature, superior insulation properties, and eco-friendly production process make them a smart alternative for a greener and more efficient future in building design.

IMPORTANCE OF SCALE AND DIMENSIONING IN ENGINEERING DRAWINGS

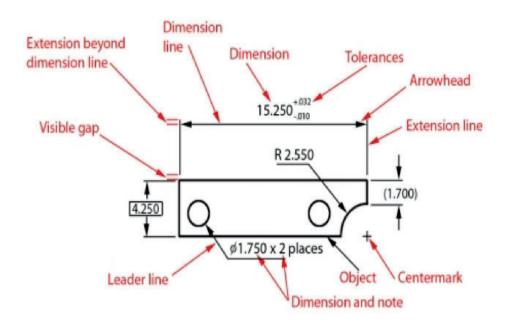
Engineering drawings are the universal language of design and Manufacturing. They convey precise information about the shape, size and features of components. Two fundamental elements that ensure clarity and accuracy in these drawings are scale and dimensioning.

What is Scale in Engineering Drawings?


Scale refers to the ratio between the actual size of an object and its representation on paper. Since many engineering components are either too large or too small to be drawn at full size, scale helps in adjusting the drawing to a manageable size.

Types of Scales:

- 1. Full Scale (1:1): Actual size representation.
- 2. Reduction Scale (Eg: 1:100): Used for large structures like buildings.
- 3. Enlargement scale (Eg: 10:1): Used for small components like watch gears.


Why Scale Matters:

- 1. Ensures readability of drawings.
- 2. Facilitates accurate interpretation by engineers, manufacturers and technicians.
- 3. Helps in space management on drawing sheets.
- 4. Maintains proportionality across different views.

Submitted by-PRIYANKA KALITA Roll no. 200310001041

IMPORTANCE OF SCALE AND DIMENSIONING IN ENGINEERING DRAWINGS

What is Dimensioning?

Dimensioning is the process of annotating a drawing with measurements. It includes linear dimensions, angles, diameters, radii, and notes that specify tolerances and finishes.

Key Principles of Dimensioning:

- 1. Clarity: Dimensions must be easy to read interpret.
- 2. Completeness: All necessary measurements should be included.
- 3. Consistency: Use standardized symbols and units.
- 4. Accuracy: Avoid redundantor conflicting dimensions.

Why Dimensioning is crucial?

- 1. Guides manufacturing and quality control.
- 2. Reduces errors and miscommunication.
- 3. Ensures interchangeability of parts.
- 4. Supports compliance with industry standards (Eg: ISO, ANSI).

Submitted by-PRIYANKA KALITA Roll no. 200310001041

WATER POLLUTION AND ITS CONTROL MEASURES

Water is one of the most essential natural resources for the survival of all living organisms. It is used for drinking, agriculture, industry, and domestic purposes. However, due to rapid industrialization, urbanization, and population growth, water pollution has become a serious environmental concern. Water pollution occurs when harmful substances such as chemicals, waste materials, and microorganisms contaminate rivers, lakes, groundwater, or oceans, making the water unfit for use.

Causes of Water Pollution

- 1. Industrial Waste: Many industries discharge untreated effluents containing toxic chemicals, heavy metals, and dyes directly into water bodies.
- 2. Domestic Sewage: Wastewater from households, containing detergents, oils, and organic waste, often enters rivers and ponds without proper treatment.
- 3. Agricultural Runoff: Fertilizers and pesticides used in farming get washed into nearby water sources, causing nutrient pollution and algal blooms.
- 4. Plastic and Solid Waste: Non-biodegradable plastic and garbage dumped into water bodies reduce oxygen levels and harm aquatic life.
- 5. Oil Spills: Leakage from ships or offshore drilling operations leads to large-scale marine pollution.
- 6. Mining Activities: Mining releases sediments and harmful minerals like arsenic and mercury, contaminating nearby water sources.

Effects of Water Pollution

- Health Hazards: Contaminated water causes diseases such as cholera, dysentery, typhoid, and hepatitis.
- Aquatic Life Loss: Toxic pollutants decrease dissolved oxygen levels, affecting fish and other aquatic organisms.
- Eutrophication: Excess nutrients in water lead to algal growth, which blocks sunlight and reduces oxygen for aquatic plants and animals.
- Economic Impact: Polluted water affects agriculture, fisheries, and tourism industries.
- Ecosystem Imbalance: Continuous pollution alters the natural balance of aquatic ecosystems.

WATER POLLUTION AND ITS CONTROL MEASURES

Control Measures for Water Pollution

- 1. Sewage Treatment Plants (STPs): Domestic wastewater should be treated before being discharged into water bodies.
- 2. Industrial Effluent Treatment: Industries must install Effluent Treatment Plants (ETPs) to remove toxic chemicals and heavy metals.
- 3. Use of Eco-friendly Fertilizers and Pesticides: Organic farming methods should be encouraged to minimize chemical runoff.
- 4. Public Awareness: Education and awareness programs can help people understand the importance of keeping water sources clean.
- 5. Legislation and Regulation: Strict enforcement of pollution control laws such as the Water (Prevention and Control of Pollution) Act, 1974 helps reduce contamination.
- 6. Rainwater Harvesting: Promoting rainwater collection can reduce dependency on polluted water sources.
- 7. Proper Solid Waste Management: Waste segregation, recycling, and scientific disposal methods can prevent garbage from entering water bodies.
- 8. Restoration of Water Bodies: Regular cleaning and desilting of lakes, ponds, and rivers help maintain their ecological balance.

WATER POLLUTION AND ITS CONTROL MEASURES

Conclusion

Water pollution is a major challenge that affects human health, the environment, and economic development. As civil engineers and responsible citizens, it is essential to adopt sustainable water management practices and pollution control measures. Clean water is not just a natural resource—it is a fundamental right and a shared responsibility.

Submitted by-UPASANA BARMAN Roll No.- 200310001056

ERRORS IN CHAIN SURVEYING AND THEIR CORRECTIONS

Chain surveying is one of the simplest and most fundamental methods of land surveying. It involves measuring distances on the ground using a chain or tape to create maps or plans of relatively small areas. The accuracy of this method largely depends on the precision of linear measurements. However, several types of errors may occur during chaining, which can affect the final results. Understanding these errors and applying suitable corrections is essential to ensure reliable survey outcomes.

Types of Errors in Chain Surveying

Errors in chain surveying can be broadly classified into three categories:

1. Personal Errors:

These arise due to the carelessness or limitations of the surveyor while conducting measurements.

Common causes include:

- Incorrect reading or recording of chain lengths.
- Improper alignment of the chain along the survey line.
- Miscounting the number of chain lengths.
- Failure to keep the chain horizontal on sloping ground.

Corrections:

- Proper training and concentration of the survey team.
- Double-checking all readings and entries in the field book.
- Using ranging rods to maintain alignment.
- Re-measuring doubtful lines for verification.

2. Instrumental Errors:

These occur due to imperfections or defects in the instruments used during the survey, particularly the chain or tape.

Common causes include:

- Chain length not equal to its nominal length (e.g., 20 m or 30 m).
- Elongation of the chain due to wear and tear.
- Shortening of the chain due to bending of links or accumulation of dirt.
- Faulty handles or rings causing inaccurate measurements.

ERRORS IN CHAIN SURVEYING AND THEIR CORRECTIONS

3. Natural Errors:

These errors arise due to environmental and terrain-related conditions. Common causes include:

- Expansion or contraction of the chain due to temperature changes.
- Sagging of the chain when held above the ground.
- Uneven ground or slopes causing incorrect horizontal distances.
- Wind or obstacles affecting accurate alignment.

Precautions to Minimize Errors

- Ensure the chain is properly tested and adjusted before use.
- Maintain clear communication between leader and follower.
- Avoid chaining during extreme temperatures.
- Record field data neatly and immediately after measurement.
- Recheck all base lines and tie lines for consistency.

Conclusion

Although chain surveying is simple and cost-effective, it requires accuracy and attention to detail. By identifying sources of error and applying appropriate corrections, surveyors can achieve precise results. A well-trained team using properly calibrated instruments can minimize errors and ensure reliable land measurements for engineering and mapping purposes.

Submitted by-SARBANI MANDAL Roll No. 200310001049